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A quantitative measure of acoustic similarity is crucial to any study comparing vocalizations of
different species, social groups, or individuals. The goal of this study was to develop a method of
extracting frequency contours from recordings of pulsed vocalizations and to test a nonlinear index
of acoustic similarity based on the error of an artificial neural network at classifying them. Since the
performance of neural networks depends on the amount of consistent variation in the training data,
this technique can be used to assess such variation from samples of acoustic signals. The frequency
contour extraction and the neural network index were tested on samples of one call type shared by
nine social groups of killer whales. For comparison, call similarity was judged by three human
subjects in pairwise classification tasks. The results showed a significant correlation between the
neural network index and the similarity ratings by the subjects. Both measures of acoustic similarity
were significantly correlated with the groups’ association patterns, indicating that both methods of
quantifying acoustic similarity are biologically meaningful. An index based on neural network
analysis therefore represents an objective and repeatable means of measuring acoustic similarity,
and allows comparison of results across studies, species, and time. © 1999 Acoustical Society of
America. �S0001-4966�99�01004-8�

PACS numbers: 43.80.Ka, 43.80.Lb, 43.80.Jz �FD�

INTRODUCTION

A widespread problem in the study of animal and human
vocal communication lies in describing and quantifying the
similarity of acoustic signals. A quantitative measure of
acoustic similarity is crucial to any study comparing the vo-
calizations of different species, social groups, or individuals.
Current approaches to this problem fall into two categories.
Statistical measures of acoustic similarity use univariate or
multivariate statistics on measures extracted from acoustic
signals �e.g., Bailey, 1978; Symmes et al., 1979; Clark et al.,
1987; Buck and Tyack, 1993; for overviews see Martindale,
1980, and Williams and Slater, 1991�. Perceptual measures
quantify acoustic similarity through ratings by human sub-
jects �e.g., Tyack, 1986; Sayigh et al., 1990�, or by the abil-
ity of human or animal subjects to discriminate between
classes of signals �e.g., Miller and Nicely, 1955; Loesche
et al., 1992�.

Statistical measures of acoustic similarity have the ad-
vantage of being objective and repeatable �Martindale, 1980;
Clark et al., 1987�, making it possible to compare the results
from different studies. However, they may not always be the
most meaningful, since they only assess the physical proper-
ties of the signals and give no information on how they are
perceived �see Horn and Falls, 1996�. Perceptual measures,

although often biologically meaningful, have the problem of
observer bias. Whereas ratings of similarity by the same sub-
ject are probably comparable, ratings made by different sub-
jects are generally not. In addition, obtaining ratings by hu-
man subjects or trained animals becomes a logistic challenge
in experiments where the acoustic similarity of multiple
samples needs to be assessed in pairwise comparisons, or
where sample sizes are large.

In this paper, we introduce the use of an artificial neural
network to measure the similarity of discrete calls of killer
whales �Orcinus orca�. Artificial neural networks were de-
veloped by modeling biological systems of information pro-
cessing �for overviews, see Dasgupta, 1991; Hinton, 1992�.
Due to their ability to classify unknown data based on infor-
mation obtained from a known training set, neural networks
have successfully been used in the automated classification
of acoustic signals �e.g., Neumann et al., 1992; Ramani
et al., 1993�, including killer whale calls �Spong et al.,
1993�. Since the performance of a neural network depends
on the amount of consistent variation between the signal pat-
terns in the training set, we demonstrate that the discrimina-
tion error of a neural network can be used to quantify the
similarity of signals. Its bio-mimetic nature makes neural
network analysis a promising candidate for a measure of
similarity which assesses acoustic variation in a biological
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meaningful while being objective and repeatable.
Ford �1984, 1989, 1991� showed that different killer

whale communities use distinctively different vocal signals.
Within the Northern Resident Community of British Colum-
bia, stable kin groups, called pods, have unique vocal reper-
toires of 7–17 discrete call types. Related pods often use
structurally distinct versions of the same call types. Within
pods, matrilineal groups, called subpods, again have their
own versions of shared call types. Finally, individuals likely
have unique ‘‘voices’’ due to variation in their sound-
producing structures. The vocal communication of killer
whales exhibits variation on a variety of levels and provides
a challenging field in which to test methods of measuring
acoustic similarity.

Many studies have used frequency contours to describe
vocalizations �e.g., Bailey, 1978; Sayigh et al., 1990; Buck
and Tyack, 1993; McCowan, 1995�. For tonal signals, a fre-
quency contour gives changes in the fundamental frequency
of a vocalization over time. For pulsed signals, such as the
discrete calls of killer whales �Schevill and Watkins, 1966;
Ford, 1989�, the contour describes changes in the pulse rep-
etition rate �pulse-rate contour�. The similarity of samples of
frequency contours can be assessed using statistical �Bailey,
1978; Buck and Tyack, 1993; McCowan, 1995� or percep-
tual �Sayigh et al., 1990� measures. Using frequency con-
tours to describe vocalizations has the advantage that the
signal is analyzed as a unit rather than broken down into
disjunct measurements. In addition, irrelevant information,
such as background noise or artifacts introduced by the re-
cording apparatus, is eliminated from subsequent analyses.
This is especially beneficial in the present study, which com-
pares calls from recordings made in the field with a variety
of recording systems.

So far, most automated procedures for extracting fre-
quency contours from spectrograms have been developed for
tonal signals �such as bird vocalizations or dolphin whistles�
and for recordings obtained under controlled circumstances
from captive or temporarily isolated animals �e.g., Buck and
Tyack, 1993�. In this paper we describe a method to deter-
mine the pulse repetition rate from spectrograms of pulsed
calls. This method of extracting pulse-rate contours is robust
to levels of background noise typical of field recordings. We
introduce an index of acoustic similarity based on the perfor-
mance of a neural network at classifying unknown contours
using information obtained from a known training set. We
test the contour extraction algorithm and the neural network
index on calls of nine matrilineal groups of killer whales. For
comparison, we measure the similarity of the same calls us-
ing the classification error of three human subjects. To inves-
tigate whether both measures of acoustic similarity are bio-
logically meaningful, we compare them to the association
patterns of the nine groups.

I. METHODS
A. Extraction of pulse-rate contours: The sidewinder
algorithm

The discrete calls of killer whales are pulsed signals in
which a tone �of a certain tonal frequency� is not emitted

continuously but in pulses �given by the pulse-repetition
rate; Schevill and Watkins, 1966; Watkins, 1967�. Unlike in
the tonal signals of many birds or other delphinids, the high-
est amount of energy is therefore not always contained in the
first, second, or third harmonic �Watkins, 1967�. The pulsed
nature of these calls and the fact that the recordings used in
this study were made in the field and often contained high
levels of background noise meant that extraction algorithms
from the literature �such as used by Buck and Tyack, 1993�
proved not to be satisfactory.

For the extraction of pulse-rate contours, suitable calls
were digitized at a sampling rate of 22 050 Hz from cassette
tapes, including at least 100 ms of background noise before
the onset of the call. Spectrograms were generated by fast
Fourier transform �FFT� using the Canary 1.2.1 sound analy-
sis software �Cornell Laboratory of Ornithology� with a filter
bandwidth of 88 Hz, and an FFT size and frame length of
1024 points. Overlap between frames was 87.5%, and a
Hamming window function was used for normalization.
These parameters give a frequency resolution of 21.53 Hz,
and a temporal resolution of 5.81 ms. Contours were ex-
tracted using MATLAB 4.2 �The MathWorks, Inc.� for Macin-
tosh with the signal processing toolbox.

The algorithm used in this study assumes that the begin-
ning and the end of the call can be determined visually from
the spectrogram. In order to reduce background noise levels,
an average noise spectrum was computed from the part of the
spectrogram before the onset of the call, and subtracted from
all time bins. In a spectrogram of a pulsed vocalization, the
pulse repetition rate is given by the spacing between fre-
quency bands �Watkins, 1967�. To find the pulse-repetition
rate at each point in time, the autocovariance sequence
�mean-removed autocorrelation sequence� R was first com-
puted for each individual power spectrum y of the spectro-
gram using the formula:

Ry�n �� �
m�0

m�N

�y�n�m �� ȳ ��y�n �� ȳ � , �1�

where n is the frequency bin number, m is the offset of the
spectrum in frequency bins, ȳ is the average sound pressure
of the spectrum, and N is the number of frequency bins in the
spectrum. To save computing time, the sequence was only
calculated from m�0 to m�N , since the segment from m
��N to m�0 is an exact mirror image and yields no addi-
tional information. The frequencies of any sidebands in the
acoustic signal are given by a simple linear relationship, and
therefore the autocovariance sequence will show a peak ev-
ery time m equals a multiple of the frequency spacing of the
bands �i.e., of the pulse-repetition rate; Watkins, 1967� and
adjacent bands overlap. Because the power spectrum of the
background noise tends to decrease with increasing fre-
quency, and adjacent frequency bands generally have similar
energy content, the second highest maximum in the autoco-
variance sequence �after m�0� usually corresponds to the
frequency bin containing the pulse-repetition rate. Some-
times this maximum represents the second, and in some rare
cases the third, harmonic. A simple heuristic algorithm de-
scribed by Buck and Tyack �1993�, which checked for local
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maxima at 1/2 and 1/3 of the offset of the second highest
maximum, could account for this.

Figure 1 shows a spectrogram of an N4 call and a pulse-
rate contour extracted from it. Figure 2 gives the power spec-
trum at t�1091ms �A� and its covariance sequence �B� for
the same call. For subsequent analysis, the pulse-repetition
rate was determined at 100 equally spaced points throughout
the call and presented to the neural network as a vector of
100 numbers. Thus calls were essentially standardized for
time; however, call length was entered as a 101 st number

into the analysis to allow discrimination of calls which dif-
fered consistently in length, but not in structure.

B. Analysis of acoustic variation in the N4 call

To test the performance of the neural network index on
biological data, we used recordings of nine matrilineal
groups, or subpods, of killer whales. Matrilineal groups con-
sisted of between two and seven individuals, and belong to
A-subclan of the Northern Resident Community �Ford,
1991� which inhabits the waters of British Columbia,
Canada. The recordings analyzed in this study were made in
the fjords and straits of the southern coast of British Colum-
bia in weakly stratified or unstratified waters of depths of up
to 400 m and often contained low to moderate levels of
shipping noise. Recordings were contributed by a number of
researchers using a variety of recording systems. All systems
had a flat frequency response from 0.1 to 7 kHz, although for
some systems the range of the flat response extended up to
20 kHz.

All members of the Northern Resident Community can
be identified consistently from natural markings �Bigg et al.,
1990; Ford et al., 1994�. The analysis was restricted to re-
cordings which could be attributed to a certain matrilineal
group because was the only group within recording range
and its identity was confirmed visually or photographically.
We chose the N4 call �Ford, 1989, 1991; see Fig. 3� for this
study because it is shared by all nine groups and it is one of
the most frequently used call types in their repertoire. Struc-
turally, the N4 calls of A08, A09, A23, A25, and A36 all
have relatively low peak pulse repetition rates, and a pro-
nounced terminal component at the end of the call �see Fig.
3�. The versions of N4 made by A12 and A30 subpods usu-
ally lack the terminal component and have a relatively higher
peak pulse repetition rate. Finally the N4 calls of A11 and
A24 subpods �A4 pod of Ford, 1991� tend to be longer than
those of any other matrilineal group and generally end in an
upsweep.

N4 calls with adequate signal-to-noise ratios were iden-
tified acoustically and visually from recordings, and were
digitized using the Canary 1.2.1 sound analysis software.
Spectrograms were computed and pulse-rate contours ex-
tracted with the sidewinder algorithm. Since the performance
of a neural network is highly dependent on the number of
examples for each signal pattern in the training set, sample
size for all matrilineal groups was standardized to 24, the
size of the smallest sample. For each group we included calls
from as many independent recording sessions as possible, to
present the neural network and the human subjects with calls
from a wide range of behavioral contexts, which are known
to affect call structure �Ford, 1989�. No less than three inde-
pendent recording sessions were used for any one matrilineal
group.

Association patterns of the different matrilineal groups
were analyzed by generating an association matrix giving the
half-weight index of association �Ginsberg and Young, 1992�
for each pair of matrilineal groups. This index gives the
number of observations of two groups traveling together as a
proportion of half the total number of observations for the
two groups. The association data came from a sightings da-

FIG. 1. �A� Spectrogram of an N4 call with a filter bandwidth of 88 Hz. The
white line at t�1091 ms shows the position of the power spectrum in Fig. 2.
�B� Pulse-rate contour extracted from the spectrogram.

FIG. 2. �A� Power spectrum of the terminal component of an N4 call at t
�1091 ms �see Fig. 1�. Filter bandwidth is 88 Hz and frequency resolution
is 21.53 Hz per frequency bin. �B� Autocovariance sequence of the power
spectrum. The arrows indicate the frequency bin containing the pulse-
repetition rate.
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tabase for the Northern Resident Community spanning the
years 1990–1995. The total number of sightings of one or
more A-subclan matrilineal group was 757, while numbers
of sightings of any one matrilineal group ranged between
147 �A25 subpod� and 415 �A30 subpod�.

C. The neural network index of acoustic similarity

Neural network analysis was done with the neural net-
work toolbox of MATLAB 4.2 for the Macintosh �The Math-
Works, Inc.�. We used a standard back-propagation network
�e.g., Rumelhart et al., 1986� with momentum and an adap-

tive learning rate �Vogl et al., 1988�. Back-propagation net-
works can be trained to classify unknown patterns by ‘‘learn-
ing’’ to associate certain known input patterns with certain
outputs. In our case inputs consisted of pulse-rate contours
plus call length from two social groups, and the expected
outputs were the matrices �0 1� and �1 0�, depending on
which group the contour came from. After training, the per-
formance of a neural network can be tested by presenting it
with data not used in training, and determining how closely
the observed output matches the expected one.

To determine the network’s performance during the
training process, the training algorithm computes the sum-

FIG. 3. Examples of spectrograms of N4 calls from the nine matrilineal groups of A-subclan.
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square error of observed against expected output. We used a
modified version of this parameter, the discrimination error,
to determine network performance when testing a network
with unknown contours. The discrimination error is calcu-
lated by subtracting the observed output from the expected
output ��0 1� or �1 0�� and taking the mean of the absolute
differences. The average of the discrimination error of all
networks trained on one comparison was chosen over the
proportion of misclassifications because the discrimination
error not only yields information on whether a classification
is correct, but also gives a relative measure of the quality of
discrimination. For example, even an untrained network
might easily generate �0.49 0.51� for an expected output of
�0 1�. Since in both cases the second output exceeds the first
one, the classification is considered correct and the neural
network has a classification error of 0, although the classifi-
cation was hardly better than random. The discrimination
error of 0.49 much better reflects the poor quality of this
classification.

The optimal neural network architecture for the dis-
crimination tasks was determined in a network design ex-
periment which consisted of training neural networks on a
range of comparisons and varying the number of neurons in
the hidden layer, as well as the length of training. For all
comparisons, discrimination did not increase detectably
when using more than 20 neurons in the hidden layer and
when training for more than 5000 iterations, so that these
parameters were used in all subsequent analyses. Neural net-
works were initialized with random weights, and a small
number of neural networks did not improve in performance
from the initialized state. Since this failure to train results
from the configuration of weights at initialization rather than
from a lack of consistent variation in the training set, such
networks were eliminated from the analysis by setting a cri-
terion of a 20% decrease of the sum-square error during the
first 150 iterations.

To arrive at an acoustic similarity matrix for the N4 calls
of the nine groups, we trained and tested neural networks on
all 36 possible pairwise comparisons. We intended to train as
many independent neural networks as possible on each com-
parison to eliminate the stochastic component of neural net-
work analysis. To do this, one contour was excluded from
the training set, a neural network was trained on the remain-
ing 47 contours, the neural network was tested using the
excluded contour and the discrimination error was deter-
mined. The test contour was then added back to the training
set, another one was removed, and this procedure was re-
peated until each contour had served as the test contour. We
tested each network with only a single contour in order to
have as many contours for training as possible. Networks
trained with fewer contours and tested with more gave con-
sistently higher discrimination errors, probably due to over-
training �Rumelhart et al., 1986�. The neural network index
of acoustic similarity for each pairwise comparison is the
average of the discrimination errors of all 48 neural networks
trained this way.

D. Acoustic similarity ratings by human subjects

The same nine samples of 24 calls each were used to
determine the classification errors of human subjects in pair-
wise computer-based discrimination tasks. Three female sub-
jects, none of whom had any previous knowledge of killer
whale vocal communication, were presented with the dis-
crimination tasks. Subject A was 20 years old and had no
musical background. Subject B was 22 years old and had
played the flute for 2 years, and subject C was 20 years old
and had played the piano for 13 years.

Since human subjects cannot be trained more than once
on the same problem without seeing an increase in perfor-
mance, we used a somewhat modified training and testing
protocol for this part of the analysis. In each discrimination
task, the subject was first presented with a training set of 16
calls belonging to two categories �A or B� according to the
group they came from. The subject could listen to the calls
and view their spectrograms, and was then asked to assign a
test set of 32 unfamiliar calls to the appropriate category.
The rating of acoustic similarity gives the proportion of mis-
classifications among these 32 calls. During the testing, the
subject was allowed to return to the training set, but in order
to cause her to generalize, was asked not to do so more than
three times for each discrimination task. Following the ex-
periments, the subjects completed a questionnaire asking
whether they classified the calls primarily using acoustic or
visual cues.

For visual comparison, average linkage dendrograms
were generated from the four acoustic similarity matrices
�one neural network index and three human subject ratings�
as well as from the association matrix. Average linkage is a
hierarchical tree-building algorithm and will group subpods
with high indices of acoustic similarity or association into
common clusters in a dendrogram �see Johnson, 1967�. The
acoustic similarity matrices and the association matrix were
compared statistically by generating the matrix correlation
coefficient for all possible comparisons. A Mantel test was
used to test for significance.

II. RESULTS

The sidewinder algorithm proved effective at extracting
pulse-rate contours from recordings obtained under a variety
of recording conditions. Contours could be obtained even
from recordings with high levels of ambient noise, if the call
was clear and the energy in two or more frequency bands
exceeded the background noise level. Only recordings con-
taining boat noise with harmonic content, and recordings
with a great amount of acoustic reverberation or strong ech-
oes, caused problems in the contour extraction.

The values for the neural network index of acoustic
similarity for the pairwise comparisons of N4 calls are given
in Table I. The neural network could best discriminate be-
tween the N4 calls of A23 and A24 subpods �neural network
index: 0.01�. A09 subpod and A25 subpods gave the poorest
discrimination �neural network index: 0.48�. The average
value for the neural network index for all discrimination
tasks was 0.15. The neural network index grouped the nine
matrilineal groups into three major clusters according to the

2503 2503J. Acoust. Soc. Am., Vol. 105, No. 4, April 1999 Deecke et al.: Neural network to compare killer whale dialects



similarity of their N4 calls. These are A08–A09–A23–A25–
A36, A12–A30, and A11–A24 �Fig. 4�. These clusters are
consistent with structural differences in the calls shown in
Fig. 3.

Table II gives the ratings of acoustic similarity �propor-
tion of misclassifications� for the 3 subjects and the 36 clas-
sification tasks. The table shows that subjects B and C clas-
sified all calls correctly in at least one comparison. The
highest proportion of misclassification was higher than ran-
dom �0.63, A08 vs A09 by subject C�. The average propor-
tion of misclassification for all discrimination tasks was 0.25,
0.18, and 0.15 for subjects A, B, and C, respectively, and a

sign test showed that subject A made significantly more mis-
classification than the other two subjects (p�0.001). The
proportions of misclassification of the three subjects for any
one comparison differed on average by 0.11, and these dif-
ferences ranged from 0 to 0.31. Subjects A and C said that
they used mainly acoustic and some visual cues to do the
discrimination, subject B said she relied mainly on the spec-
trogram, with some acoustic cues. Figure 5 shows that all
three subjects grouped the calls of the nine matrilineal
groups into three major clusters which correspond to the
clusters generated by the neural network index �Fig. 4�.
However, the results from individual subjects differ in the
relationship of matrilineal groups within the three clusters, as
well as in the positions of the clusters with respect to each
other.

The association matrix for the nine matrilineal groups is
given in Table III. Association indices range from 0.14 for
A09 and A11 subpod to 0.95 for A11 and A24 subpod. The
average linkage dendrogram �Fig. 6� shows that their asso-
ciation patterns group the nine matrilineal groups into the
same three clusters as the acoustic analyses, with the differ-
ence that the A36 subpod associates more often with A12
while being acoustically more similar to A08–A09–A23–
A25.

Table IV gives the correlation matrix of the ratings of

FIG. 4. Average linkage dendrogram giving acoustic similarity of the N4
call of the nine matrilineal groups based on the neural network index �gen-
erated from Table I�. The position of the vertical lines linking groups or
clusters of groups with respect to the scale bar above indicates the similarity
of their N4 call based on the neural network index. Comparisons of N4 calls
from groups which are linked on the left-hand side of the graph gave higher
average discrimination errors �suggesting higher similarity� than those
linked on the right-hand side.

TABLE I. Acoustic similarity matrix for the N4 call of the nine matrilineal
groups based on the neural network index of acoustic similarity. The values
give the neural network performance �average discrimination error� for each
pairwise comparison.

A09 0.34

A11 0.09 0.04

A12 0.05 0.03 0.08

A23 0.18 0.19 0.04 0.04

A24 0.10 0.03 0.29 0.08 0.01

A25 0.43 0.48 0.04 0.05 0.23 0.03

A30 0.14 0.06 0.07 0.37 0.09 0.10 0.06

A36 0.27 0.40 0.07 0.06 0.19 0.06 0.37 0.10

A08 A09 A11 A12 A23 A24 A25 A30

TABLE II. Acoustic similarity matrix for the N4 call of the nine matrilineal
groups generated by three human subjects. The values give the subjects’
performance �proportion of misclassifications� for each pairwise compari-
son.

Subject

A 0.44
A09 B 0.25

C 0.63

A 0.13 0.22
A11 B 0.25 0.06

C 0.16 0.03

A 0.16 0.06 0.06
A12 B 0.09 0.09 0.09

C 0.06 0.09 0.03

A 0.50 0.25 0.03 0.25
A23 B 0.19 0.47 0.03 0.09

C 0.19 0.53 0.00 0.03

A 0.25 0.28 0.44 0.28 0.03
A24 B 0.16 0.06 0.38 0.22 0.03

C 0.19 0.06 0.28 0.00 0.03

A 0.44 0.50 0.03 0.22 0.41 0.16
A25 B 0.44 0.50 0.13 0.09 0.38 0.03

C 0.25 0.34 0.13 0.00 0.38 0.00

A 0.13 0.13 0.22 0.31 0.09 0.38 0.06
A30 B 0.09 0.13 0.09 0.38 0.00 0.03 0.06

C 0.06 0.13 0.00 0.41 0.00 0.00 0.00

A 0.34 0.25 0.22 0.34 0.44 0.22 0.50 0.38
A36 B 0.09 0.28 0.16 0.16 0.16 0.13 0.31 0.31

C 0.22 0.19 0.13 0.13 0.28 0.06 0.25 0.28

A08 A09 A11 A12 A23 A24 A25 A30
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acoustic similarity by the three subjects, by the neural net-
work, as well as of the association indices. All correlations
are significant with p�0.001 �Mantel’s test�. Two correla-
tion coefficients comparing ratings of different subjects
�subjects A and B; subjects A and C� are lower than the
correlation coefficients comparing human subject ratings and
the neural network indices. All measures of acoustic similar-

ity gave significant correlations with the groups’ association
indices.

III. DISCUSSION

The contour extraction algorithm based on autocovari-
ance in the frequency domain proved good at extracting
pulse-rate contours even from recordings with poor signal-
to-noise ratios. Unless the noise itself had harmonic content,
it was canceled out in the autocovariance sequence, whereas
the harmonic signals were amplified. We suggest that pulse-
rate contours are an effective way to describe pulsed vocal-
izations and believe that this algorithm would be useful for
extracting contours from noisy recordings of the pulsed calls
of a wide variety of species.

The shortcomings of this algorithm are that it cannot be
applied to broadband or pure-tone signals, and that compared
to alternative algorithms, it is computationally expensive.
Mixed signals, however, can still be analyzed by switching
to another algorithm �e.g., that of Buck and Tyack, 1993� if
the autocovariance sequence fails to detect harmonic content.
Recent developments in computer hardware are likely to fur-
ther reduce computing time, making real-time extraction of
pulse-rate contours a possibility.

The advantage of analyses of acoustic similarity based
on frequency contours over those based on isolated measure-
ments of the spectrogram lies in the fact that analysis of
frequency contours requires no, or very little, prior knowl-
edge of where to expect the differences in the signals
�Bailey, 1978�. Subtle and very localized differences be-
tween two signal patterns are easily missed in conventional
analyses by taking measurements of a limited number of
structural variables. Unlike discrimination and classification
analyses of bioacoustic signals where the input is the wave-
form �e.g., Neumann et al., in press�, or the spectrogram �e.g.

FIG. 5. Average linkage dendrogram giving acoustic similarity of the N4
call of the nine matrilineal groups based on the classification errors of the
three subjects �generated from Table II�. Comparisons of N4 calls from
groups which are linked on the left-hand side of the graph gave higher
classification errors �suggesting higher similarity� than those linked on the
right-hand side

FIG. 6. Average linkage dendrogram giving association patterns of the nine
matrilineal groups based on the half-weight index of association �generated
from Table III�. Groups which are linked on the left-hand side of the graphs
spend more time traveling together than those linked on the right-hand side.

TABLE III. Association matrix for the nine matrilineal groups. The values
give the half-weight index of association.

A09 0.73

A11 0.42 0.24

A12 0.51 0.40 0.41

A23 0.77 0.69 0.33 0.47

A24 0.42 0.25 0.97 0.41 0.32

A25 0.69 0.61 0.27 0.37 0.78 0.26

A30 0.33 0.25 0.33 0.54 0.35 0.33 0.27

A36 0.40 0.38 0.34 0.52 0.39 0.33 0.27 0.37

A08 A09 A11 A12 A23 A24 A25 A30
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Spong et al., 1993; Erbe et al., in press�, amplitude informa-
tion is excluded from the analysis of frequency contours.
Although this may be a disadvantage in some studies analyz-
ing recordings obtained in controlled environments, it will
prove beneficial in others where differences in recording
equipment and in the composition of background noise in-
troduces spurious variability into the data. In the study of
Spong et al. �1993�, for example, it cannot be ruled out that
the neural network discriminated along differences in back-
ground noise composition rather than individual-specific vo-
cal differences.

Although the ratings of similarity by human subjects
agreed on a fundamental level, this study suggests that indi-
vidual human subjects perceive similarity of killer whale
calls differently. The ratings of similarity disagree between
subjects in the acoustic relationships of matrilineal groups
within the three clusters, as well as in the position of these
clusters with respect to each other. The subject who had
never played a musical instrument had significantly higher
classification errors than the other two subjects, which may
suggest that the amount of musical exposure contributes to
observer bias �see also Halpern et al., 1995; Baribeau et al.,
1996; Halpern et al., 1996�.

Comparing the ratings of acoustic similarity by the neu-
ral network with those of the human subjects shows that both
ways of quantifying acoustic variation gave similar results.
The matrix correlation coefficients �Table IV� suggest that
the differences between ratings from individual subjects are
greater than are differences between subject ratings and the
neural network index. Since multiple independent neural net-
works are trained on the same problem in each comparison,
the neural network index will give essentially identical re-
sults given the same input data. The neural network therefore
represents an objective and repeatable means of measuring
acoustic similarity, and allows the comparison of results
across studies, species, and time.

Like discriminant function analysis �e.g., Job et al.,
1995�, or analysis of confusion frequencies �e.g., Miller and
Nicely, 1955; Loesche et al., 1992�, the neural network in-
dex of acoustic similarity is based on the premise that simi-
larity and discrimination are inversely related. All three
methods rate patterns as similar if the analysis is unable to
tell them apart, and conversely consider patterns distinct if
the analysis can consistently discriminate between them.
This concept of similarity differs from that underlying other

methods which use the geometric distance between two pat-
terns as a measure of their similarity. Examples for the latter
are cross correlation �e.g., Clark et al., 1987�, and cluster
analysis �e.g., McCowan, 1995�. Arguably the first concept
of similarity is more applicable to the study of communica-
tion, since the information value of a signal is largely deter-
mined by how well a receiving animal can distinguish it
from other signals �Beecher, 1989�.

The training procedure, which involves error back-
propagation to discriminate between different patterns, is es-
sentially a self-organizing process and does not depend on
strictly linear relationships in the input data. For this reason a
neural network index will be able to detect and integrate
differences between the input patterns that would be missed
by most conventional statistical analyses. Research into bio-
logical neural systems suggests that these also operate in a
nonlinear and self-organizing way �Kelso, 1995�, which may
explain why a neural network based approach is often the
best way to model biological signal processing tasks �Hunt,
1993; Erbe et al., in press�. The fact that the neural network
index of acoustic similarity shows a significant correlation
with the association patterns of the different matrilineal
groups suggests that the index rates acoustic similarity in a
biologically meaningful way.

An index of acoustic variation based on neural network
analysis can be viewed as a hybrid between statistical and
perceptive approaches of measuring acoustic similarity. It
combines the objectivity and repeatability of a strictly statis-
tical approach with the self-organizing nonlinear nature of
acoustic perception and biological signal processing, and
therefore holds great potential in the study of human and
animal communication.

IV. CONCLUSIONS

This study demonstrates that autocovariance in the fre-
quency domain is a useful way to extract contours of the
pulse-repetition rate from noisy recordings of pulsed signals.
This study also shows that discrimination of frequency con-
tours using a back-propagation neural network is an effective
and repeatable way to measure the similarity of animal
sounds. The significant correlation between the neural net-
work based acoustic similarity index and a biological param-

TABLE IV. Correlation matrix giving matrix correlation coefficients for the ratings of acoustic similarity by the
human subjects, the neural network index, and the association indices of the nine matrilineal groups. All
correlations are significant with p�0.001 �Mantel test�.

Similarity ratings
Subject A 1
Subject B 0.63 1
Subject C 0.60 0.79 1

Neural network index 0.69 0.78 0.71 1

Index of association 0.57 0.67 0.66 0.54 1

Subject A Subject B Subject C Neural Index of
network association

Similarity ratings index
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eter, the groups’ association patterns, suggests that the index
assesses acoustic similarity in a biologically meaningful
way.
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