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I nformation theory has been discussed as a technique
to analyse communicative processes or sequential

behaviour of nonhuman animals, as in MacKay (1972),
Slater (1973) and Bradbury & Vehrencamp (1998, chapters
13–15) among others. Recently, McCowan et al. (1999)
proposed the use of information theory for their study of
bottlenose dolphin, Tursiops truncatus, whistles. They
discussed several aspects of their analysis techniques.
Although we agree about the effectiveness of information
theory to analyse unknown sources, we would like to
further the discussion of one analysis method used in
McCowan et al. (1999). Specifically, we wish to illustrate
that Zipf’s law is of little use in the analysis of communi-
cation signals. The presence or absence in dolphins and
other animals of some features of human language remain
intriguing and open questions (Tyack 1999). However, we
assert that a Zipf-based technique is methodologically
inappropriate to address these questions.
McCowan et al. (1999, page 410) noted that ‘Few

investigators of animal behaviour have examined the
use of first-order entropic analysis known as Zipf’s law or
statistic’. In fact, Zipf’s law has been discarded as a linguis-
tic tool, strongly criticized by Miller (1957), Miller &
Chomsky (1963) and more thoroughly by Rapoport
(1982). McCowan et al. (1999, page 411) also cite the
application of Zipf’s law to DNA sequences by Mantegna
et al. (1994) ‘with varying interpretations and reliability
(Flam 1994; Damashek 1995; Bonhoeffer et al. 1996;
Israeloff et al. 1996; Voss 1996)’. These references’ inter-
pretations vary from strong criticisms of the use of Zipf’s
law in the Mantegna et al. study (Bonhoeffer et al. 1996;
Israeloff et al. 1996; Voss 1996) to a short news item about

the upcoming publication of Mantegna et al.’s article
(Flam 1994), to no mention whatsoever of Mantegna or
Zipf (Damashek 1995). Besides the original Mantegna
et al. paper, none of the references cited by McCowan
et al. support Zipf’s law as methodologically appropriate to
the DNA study (see also Martindale & Konopka 1996).
Both the linguistics and DNA communities have roundly
rejected Zipf’s law as a diagnostic tool.
Tests based on Zipf’s law are highly susceptible to false

positives, both in theory and practice. Consequently,
when Zipf’s law is used as a test for linguistic, communi-
cative or otherwise meaningful processes, as in McCowan
et al. (1999), the results are uninterpretable, even if
estimates of the Zipf statistic are appropriately obtained.
We present two simple probabilistic examples illustrating
this issue, one in which a meaningless process satisfies the
test proposed by McCowan et al. (1999), and another in
which a meaningful process (this manuscript) fails the
test. Moreover, we will illustrate that the estimation
procedure used by McCowan et al. (1999) and Zipf
(1949) is underconstrained and produces results that are
not internally consistent. A properly constrained and
internally consistent estimation process for the Zipf
parameter would degrade the R2 values of Table 1 in
McCowan et al. (1999). Finally, McCowan et al. (1999) use
some important technical terms without clear explicit
definition, or define them differently from the informa-
tion theory literature upon which they draw. To avoid any
confusion, we will explicitly define ‘random’, ‘entropy’
and ‘entropies’, and ‘first-order’ before embarking on
a discussion of the problems in using Zipf’s law as
a diagnostic test.
First, McCowan et al. (1999) used ‘random’ as synony-

mous with ‘independently uniformly distributed’ when
describing information sources or communication sys-
tems. In the engineering and mathematics communities,
which gave birth to the information theory McCowan
et al. promote for the study of animal communication,
‘random’ is used to denote any process or event with
a nondeterministic or stochastic component, and not
the highly restrictive meaning McCowan et al. assign to
it. For example, probability and statistics texts commonly
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discuss ‘random variables’ that are not independent or
uniformly distributed (Feller 1968, page 212; Papoulis
1984, page 63). Loève (1963, page 497) notes ‘In the
literature, the terms ‘‘random function’’, ‘‘random pro-
cess’’ and ‘‘stochastic process’’ are treated as synonymous’.
The potential for confusion arises when McCowan et al.
use ‘nonrandom’ as synonymous with ‘possibly stochastic
but not independently uniformly distributed’ rather than
the common definition of ‘deterministic’. McCowan
et al.’s (1999, page 411) statement that ‘Such a function
nevertheless remains a valid indication of both the non-
randomness of a system as well as the potential capacity
for communication transfer of such a system’ appears to
be a stronger conclusion than it is. In common terminol-
ogy, they are stating that Zipf’s statistic can test whether
the sample points deviate from being equiprobable.
Second, McCowan et al. (1999) do not clearly distin-

guish between the entropy of a process, which is a funda-
mental property of the source, and the estimates of this
entropy derived from various-order Markov model as-
sumptions. (A stochastic process, information source, or
simply a process or source, produces a sequence of random
variables, to which animals’ vocalization signals are
abstracted.) Shannon (1948) clearly defined the entropy
H of an information source, but he did not define the
‘entropic orders’ nor the multiple ‘Shannon entropies’
that McCowan et al. (1999, e.g. page 410) frequently
reference. Although Shannon’s discussion of approximat-
ing English text through a sequence of successively high-
er-order Markov models might superficially be considered
entropic ordering, neither Shannon (1948) nor McCowan
et al. (1999) define ‘entropic orders’. If McCowan et al.
used ‘entropic orders’ to refer to the succession of
estimates of the true entropy H obtained from these
models, then their discussion confounds the distinction
between the source’s true entropy H and the model-based
estimates of this quantity, because entropy is a fundamen-
tal property of an information source, and as such is
unordered.
Third, McCowan et al. (1999, page 410) argued that

Zipf’s law is ‘a first-order entropic analysis’ without de-
fining the term ‘first-order’. This term has different mean-
ings in different contexts. Since ‘a first-order entropic
analysis’ is not a well-known analysis among information
theorists, the term must be clearly defined for the readers
to understand and judge the argument. Because several
arguments about their use of ‘first-order’ are strongly
linked to their use of Zipf’s law, we will discuss this issue
in detail in the course of discussing Zipf’s law.
Zipf (1949) observed that, for many human languages,

a plot of the frequency of words against the rank of
occurrence on doubly logarithmic axes (log frequency
versus log rank) is well approximated by a straight line
with a slope around !1. We will call this slope the ‘Zipf’s
statistic’, denoted by a. Zipf postulated that this relation-
ship held for all human languages, and this relation
became known as Zipf’s law. Although McCowan et al.
(1999, page 411) assert that a " !1 ‘optimizes the amount
of potential communication that can be carried through
a channel from speaker to receiver’, neither they nor Zipf
(1949) provided a mathematical proof to support this

assertion. As noted in Rapoport (1982, page 3), Zipf’s law’s
purported theoretical basis ‘the principle of Least Effort is
stated in vague, connotation-ridden language, precluding
rigorous deduction’. Zipf’s law thus is an empirical fit of
many observations to a vaguely defined theory of a simple
form. It is not derived from or proved on a set of
assumptions about the intrinsic properties of languages.
As such, the term ‘law’ should be loosely interpreted.

Mandelbrot (1952) considered the optimal transmission
of information in a word-by-word manner. His premise
was that the cost of sending a single word is proportional
to the number of letters in the word (including the spaces
separating the words), and he considered the information
conveyed per unit cost. He found that in order to achieve
optimal efficiency under this operating condition, the
source must obey Zipf’s distribution. ‘There is a strong
temptation to reverse the implication and to argue that
because we obey Zipf’s law we must therefore be commu-
nicating word-by-word with maximal efficiency’ (Miller
1954, page 415). Although natural languages are observed
to obey Zipf’s distribution, ‘they are far less efficient than
they could be under the constraints Mandelbrot imposes’
(Miller 1954, page 415). This counterexample indicates
that the converse of Mandelbrot’s result does not hold.
That is, under Mandelbrot’s condition, Zipf’s distribution
is necessary for optimal information transmission, but not
sufficient. Note that McCowan et al. (1999, page 411)
claim the slope of a " !1 ‘optimizes the amount of
potential communication’ and not the amount of actual
communication. In the absence of evidence that dolphins
transmit whistles under Mandelbrot’s constraints, neither
potential nor actual communication is optimized by
a " !1, and thus there is no basis for this claim of
optimality. Basic information theory results show that
a Z 0 maximizes the amount of potential communication
(Cover & Thomas 1991, page 27) in the absence of
Mandelbrot’s word-by-word encoding and minimum cost
constraint conditions.

Note that a Zipf’s statistic of a " 0 is neither a necessary
nor a sufficient condition to conclude that a source
contains no communicative or linguistic content. For
example, the purpose of data compression is to transform
input data into the most compact form from which the
original data can be later faithfully retrieved, optimizing
the amount of communication per symbol to be trans-
mitted. As a result of this transformation, the compressed
data appear as close to independent and equiprobable as
possible (Visweswariah et al. 1998), and thus will have
a " 0. When communication is not restricted by Mandel-
brot’s conditions, aZ 0 maximizes the potential com-
municative ability of the source. Data compression
algorithms are consistent with this principle.

Example (Data Compression)

Analysing this manuscript, including punctuation, as
a text file on a character by character basis with a Zipf’s
statistic yields âZ !1.95 (â denotes a statistical estimate
of true a from sample data). After this text is compressed
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by a standard gzip data compression utility, âZ !0.12 is
obtained in the same procedure. Both files contain the
same information and communicative content, but pro-
vide radically different values of â. The strongest state-
ment that can be made about a source with a " 0 is that
researchers without external knowledge of the data format
or encoding are unlikely to detect or interpret any
linguistic content that may be present.
Zipf’s distribution is recognized to be a simple conse-

quence of taking rank as the independent variable under
some general conditions that are widely observed in, or
underlying, many processes (Miller 1957; Miller & Chom-
sky 1963; Li 1992). By so doing, many sources with
different distributions show an inverse power or Zipf
distribution, ‘without appeal to least effort, least cost,
maximal information, or any branch of the calculus of
variations’ (Miller 1957, page 314). This article repeats two
major points from past discussions of Zipf’s law: (1) the
Zipf’s distribution is observed in many noncommunica-
tive and nonlinguistic processes; therefore, it cannot
discriminate communicative processes from meaningless
and purposeless processes such as noise; (2) the persistent
slope of roughly a " !1 for Zipf’s plots does not imply
that processes are similar, but rather that the slope is
insensitive to large changes in the underlying mechanism
or probabilistic description of the processes.
Many noncommunicative systems are known to exhibit

the Zipf’s distribution. Although McCowan et al. (1999,
page 411) claim that the Zipf’s statistic ‘measures the
potential capacity for information transfer’ in a system,
even a simple stochastic mechanism, such as a die-rolling
trial, satisfies Zipf’s law. The following example demon-
strates that a stochastic process devoid of semantic or
communicative content may still satisfy Zipf’s law.

Example (Die-Rolling)

We roll a fair cubic die repeatedly. We treat the number
resulting from each roll as a letter, which we write down
after each roll. We arbitrarily choose 6 to represent a space
forming the break between successive words. A resulting
string might begin ‘5 _ 42 22 5133 _ 2 4.’ where ‘_’
denotes the null word (made visible), which occurs when
we see two adjacent spaces (i.e. 6 is rolled twice in a row).
The analysis below is based on Li (1992), but allows the
null word with length zero to keep the analysis simpler. Li
(1992) excludes the null word but shows a very similar
result. Miller (1957) and Miller & Chomsky (1963) present
a similar example based on equiprobably and identically
distributed random digits.
Let n[ denote the number of distinct possible words of

length [, p[ the probability of each of these words, and R([)
the set of ranks of words of length [, one of whose
elements is represented by r([). In this example, all words
of the same length are equiprobable.
At the beginning of the experiment, the most probable

word is the null word, which occurs when we roll a 6 first.
Thus, the null word has probability p0 Z 1/6, n0 Z 1, and
R(0)Z {1}. If the first die roll is not a 6, then the next most
probable words are n1 Z 5 words each containing one
letter, all obtained by rolling a number from 1, 2,., 5 on

the first roll, followed by a 6 on the second roll. The
probability of any one of these words is (1/6)(1/6) Z 1/36,
and the ranks for these one-letter words, R(1), are {2, 3, 4,
5, 6}. Generalizing to words of length [, we have

n[Z5[ ð1Þ

p[Z
!
1

6

"[1

6
Z6!ð[C1Þ ð2Þ

and

Rð[ÞZ

(

n :
X[!1

kZ0

5k!n%
X[

kZ0

5k

)

: ð3Þ

Note that the analysis for all successive words following
the space or a 6 that ends the previous word is identical to
that above for the beginning of the experiment.
It is clear from equation (2) that 0! p[ ! 1 for all [. It is

also clear that each event consists of a single sample point.
Let us verify that the probabilities sum to one. There are
n[ Z 5[ different words of length [ each of whose in-
dividual probability is p[ Z 6!([C1), for each [Z 0, 1, 2,.
Therefore,

XN

[Z0

n[p[ Z
XN

[Z0

5[6!ð[C1Þ

Z
1

6

XN

[Z0

!
5

6

"[

Z
1

6

1

1! 5
6

Z 1;

and thus equations (1) and (2) satisfy the axiom of prob-
ability (Loève 1963, pp. 8–9, 15–17; Feller 1968, page 22).
Now, we find the slope of the straight line matching this

rank–probability plot on doubly logarithmic axes. Com-
puting the geometric series, equation (3) simplifies to

5[ ! 1

4
!rð[Þ%5[C1 ! 1

4
:

Rearranging and taking the base 5 log of all terms yields

[!log5½4rð[ÞC1&%[C1:

Raising 1/6 to the power of each term and substituting
equation (2),

p[%6!log5 ½4rð[ÞC1&!p[!1:

Further manipulation using properties of exponents and
logarithms shows that the middle term is

4! log 6
log 5

!
rð[ÞC1

4

"! log 6
log 5

:

This expression represents the same value for any arbitrary
but fixed base of the logarithms (log2, loge, log10,.),
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because ratios of logs are independent of the base of the
logs.
Our straight line fitting the rank–frequency data is in

the form

pðrÞZcra; ð4Þ

where a and c are given as

aZ! log 6

log 5
ð5Þ

and

cZ
1

PN
rZ1 r

! log 6
log 5

; ð6Þ

respectively. Note that c is defined in equation (6) in such
a way that it makes

PN
rZ1 pðrÞZ1:

In this expression, we see that a, the power of the rank,
is !log 6/log 5, which is approximately !1.11. This a will
be the slope when the data are plotted on doubly
logarithmic axes. Consequently, this simple stochastic
process devoid of any semantic or linguistic content has
produced data closely resembling the Zipf’s statistic for
human language. Observing the output of this process
without knowledge of the generating mechanism, we
would be unable to distinguish the output from these
die rolls from human language using Zipf’s statistic. Since
even very simple stochastic processes exhibit Zipf’s distri-
bution with slope a " !1, compatibility with Zipf’s law is
not an appropriate route to conclude anything about the
linguistic nature or potential capacity for communication
transfer. Furthermore, if we used a (26 C 1)-face die to
generate random words, aZ !1.01. The difference in
a between a 6- and 27-face dice is small, and in both
cases the values are surprisingly close to Zipf’s predicted
value, !1. More generally, if we had an m-face die,
aZ !log m/log(m!1), which approaches !1 as m in-
creases, and is never too far from !1 for any mO 2. It is
especially striking considering that a very simple stochas-
tic process model produced these results, and that a large
change in the number of faces did not substantially
change the Zipf’s distribution parameter a.
Figure 1 shows the probability versus rank in log–log

coordinates for the six-sided die case. The staircase line
represents the theoretical distribution of equations (1–3),
the straight line is the fit obtained in equations (4–6), and
the dots are a simulation result with 800 rolls. The
simulation result fits a straight line better than the
theoretical (staircase) result, because the random nature
of the process and sampling make the empirical distribu-
tion noisy. Thus, the empirical distribution fills the gaps
between the steps of the theoretical curve.
In this die-rolling example, a single output or externally

observable event (word) is produced from possibly multi-
ple internal or underlying events (individual digits). Note,
however, in behavioural studies, what observers can
record is output events and not underlying events, which
cannot be identified without knowledge of the internal
mechanism. In this die-rolling example, we have exact

knowledge on the internal mechanism and we know that
a sequence of independent identically distributed random
variables can fully describe this process.

McCowan et al. (1999, page 410) claimed that analysis
using Zipf’s law is only valid for first-order transitions.
However, they did not define the term first-order in this
context, nor did they provide mathematical basis support-
ing this claim. In our view, there are four possibilities for
McCowan et al.’s definition of ‘first-order’.

(1) The condition or assumption that the observed
sequence consists of symbols that are independently
identically distributed. This is the definition Shannon
(1948, 1951) used in his examples.

(2) The condition that the analysis is applied on the
sequence of symbols that represent the smallest events
that occurred during observation.

(3) The condition that the analysis is applied on the
sequence of symbols that represent the fundamental
perceptual units of the study animal.

(4) The condition that the analysis is applied on the
sequence of symbols that represent the internal events
that lead the animal to produce the behaviour or vocal-
ization of the observer’s interest.

If definition (1) is adopted, the quoted claim by
McCowan et al. above simply means that the Zipf analysis
is only valid when there is no probabilistic dependence
between events observed at different times. This is
equivalent to claiming that the Zipf-based method is only
valid for the analysis of the first model in an infinite
sequence of models approximating the source in Shan-
non’s experiment, and is not applicable to the source
directly. Because the first-order model is the exact model
of our die-rolling process, it is a valid application of Zipf’s
law based on this definition of first-order.

If definition (2) is adopted, an objection may be raised
against our die-rolling example, because the output
events were produced from multiple internal events.
Another objection may claim that the die-rolling example
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Figure 1. Rank–frequency plot of words produced by the die-rolling
example. The staircase represents the theoretical distribution, the
straight line the fitted line of equations (4–6), and the dotted line
a simulation result with 800 rolls.
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produced an output sequence with words of variable
length consisting of elements from a fixed-size alphabet.
This contrasts with McCowan et al.’s analysis, which
applied Zipf’s law to a fixed-length (1 whistle) output
with a variable, growing alphabet size (the number of
distinct whistles observed). However, the analysis is
applied to the output events (words), not the internal
events (individual numbers). Since we kept our example
simple, it is easy to look at an output event and identify
what internal events produced it. If the output event was
produced through some other mapping procedure, an
observer probably could not identify what internal events
were responsible for the output event being observed.
Therefore, this objection has no basis.
Ferrer i Cancho & Solé (2002) raised one potential

objection to explaining Zipf’s law by using randomly
generated texts such as our die-rolling example above.
They argue that the probability of a word is immediately
determined by the word length, and the word length
distribution is unrealistic compared with empirically
obtained word length distributions for natural languages.
They also argue that the rank–frequency distribution of
five-letter-long English words fits Zipf’s distribution,
whereas that of five-digit-long words in randomly gener-
ated texts shows a flat rank–frequency distribution. Their
questions are concerned about the statistics of a particular
aspect (length) of word forms in natural languages, and
not the frequency of words. In other words, their argu-
ment requires prior knowledge about the text to select
a group of words for analysis. Such a preselection criterion
is rarely justified in the analysis of unknown texts or
sequences of animal vocalizations or behaviours.
Definitions (3) and (4) present a deep and pervasive

issue for many studies of animal communication because
of the lack of reliable knowledge about the perceptual
boundaries or the internal mechanisms of the animals
that control behaviour or vocalization.
McCowan et al. (1999) chose an individual dolphin

whistle as the unit of their analysis to estimate the Zipf’s
statistic, where they defined the interwhistle interval as
a minimum of 300 ms of silence. They analysed each
whistle within the context of a whistle sequence. Howev-
er, they provided no evidence that the whistles thus
segmented and categorized coincide with the categoriza-
tion of bottlenose dolphins’ perceptual boundaries or with
internal events that lead bottlenose dolphins to produce
each whistle.
If definition (3) is adopted, several objections may be

raised against our die-rolling example. The same objection
that the analysis is not based on perceptual boundaries
also applies to McCowan et al.’s study. It would be
inconsistent to use definition (3) of ‘first-order’ to criticize
the die-rolling example while supporting McCowan et al.’s
study, since they also provide no perceptual data support-
ing their arbitrary choice of 300 ms of silence as the
boundary between whistles (i.e. their unit of analysis).
Under definition (3), ‘first-order’ analyses of the die-roll-
ing example and McCowan et al.’s whistle sequences are
equally valid or invalid.
If definition (4) is adopted, our die-rolling example fails

to comply with McCowan et al.’s first-order condition

because a single output word is a concatenation of
possibly more than one internal event. However, as noted
above, in behavioural studies, what observers can record is
output events and not underlying events, which cannot
be identified without knowledge of the internal mecha-
nism. Therefore, this definition of ‘first-order’ is impracti-
cal for behavioural studies. This is also true for McCowan
et al. (1999), since they did not attempt to provide
evidence that each whistle is probabilistically generated
by a single internal event. Therefore, their first-order
condition fails for both our die-rolling example and their
study. If definition (4) is adopted, their claim negates their
own analysis technique.
Concerning the segmentation and classification of

animal vocalizations, we wish to make it explicit that
almost every study of animal communication necessitates
some arbitrary decision of how to segment, group and
classify the observed data for analysis. This decision made
by scientists may or may not agree with the study animal’s
internal processes that are responsible for the generation
of externally observable events. It also may or may not
agree with the perceptual boundaries of signal categories
of the study animal. Consequently, one should be leery of
analysis methods that make assumptions or limitations on
the underlying mechanisms generating the observed data,
or how the observed data would be perceived by the
receiver.
The objection raised with definition (2) can be further

clarified by constructing an invertible mapping from the
words generated by the die-rolling game to another set of
words (e.g. Israeloff et al. 1996). Briefly, consider an
alphabet consisting of countably infinite elements {a1,.,
a5, a11, a12.}. Mapping each die-rolling word d to the
single element ad produces an output sequence that has
fixed-length words (one element) constructed from an
alphabet of variable size, as in McCowan et al.’s (1999)
analysis. Although the sequence of words generated by
this mapping will satisfy Zipf’s law, it lacks semantic
content.
Imagine numbering each word in a dictionary, then

consider mapping each numerical word in the die-rolling
example to the corresponding word in an English dictio-
nary (i.e. replace each occurrence of ‘1’ by ‘a’, each ‘3’ by
‘aardvark’, each ‘12’ by ‘abaft’, and so on). Additionally,
each null word generated by two successive rolls of 6 is
replaced with ‘um’. Thus ‘um’ would be chosen with
probability 1/6, ‘a’ and ‘aardvark’ would be chosen with
probability 1/36, ‘abaft’ with probability 1/216, and so
on. Each output word is now unmistakably viewed as a
single random event, and has a simple probability mass
function describing its generation. This is one possible
bijective mapping between the die-rolling example and an
independent identically distributed process producing
English words, whose rank–frequency relation satisfies
Zipf’s law.
The external observer viewing only the words and not

the die rolls would find that the word frequencies met
Zipf’s law, although the sequence of words has no
semantic content. Moreover, the external observer cannot
distinguish the sequence of words produced by this
mapping of the die rolls from the sequence of words
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produced by an independent identically distributed source
that assigns probability 6!([C1) to each dictionary word
whose corresponding die-rolling word has length [. In
other words, different internal mechanisms can generate
output sequences that are indistinguishable by an external
observer using Zipf’s statistic. Thus, our die-rolling exam-
ple is a first-order process in the sense of definition (1).
This mapping refutes any objection arguing that the die-
rolling example obeyed Zipf’s law as a consequence of its
higher-order structure in generating a sequence devoid of
semantic content.
Summarizing the discussion of the die-rolling example,

there are a large class of processes that show the Zipf’s
distribution, including both linguistic processes such as
English, and nonlinguistic processes such as our die-
rolling example. Zipf himself mentioned that the size of
cities followed his law. Mandelbrot (1952) subsequently
attempted to apply Zipf’s law using a variety of techniques
(see also Miller 1954), and found that Zipf’s law was
‘universal’ in the sense that even a simple stochastic
process like our die-rolling example obeys the law, reach-
ing the conclusion that ‘Zipf’s law is linguistically very
shallow’ (Mandelbrot 1982, page 346). Miller & Chomsky
(1963, page 463) surveyed the studies on the relation of
language to the Zipf’s distribution, concluding that ‘its
occurrence does not constitute evidence that the signal
analysed must have come from some linguistic or pur-
poseful source’. Compatibility with Zipf’s law may be
a necessary condition for a language, but it is by no means
a sufficient condition. As Miller & Chomsky (1963, page
463) noted, Zipf’s law ‘has something of the status of
a null hypothesis, and like many null hypotheses, it is
often more interesting to reject than to accept’. This is
partly because, if Zipf’s distribution is indeed a necessary
condition for a language, then rejecting the fit to Zipf’s
distribution immediately implies that the observed data
did not come from a language, whereas accepting the fit to
Zipf’s distribution does not imply that the data came from
a language. In fact, our data compression example above
demonstrates that Zipf’s law is not even a necessary
condition for a data sequence to have semantic content,
because compressing this commentary produces a " 0 but
preserves all of the information. Note also that Troll &
Graben (1998) pointed out that hierarchical grammar or
long-range correlation is unnecessary in order for Zipf’s
law to hold, despite the claims made in some early works.
Figure 1 of McCowan et al. (1999) comparing randomly

generated data and the hypothetical distribution for
human languages raises another question. As noted above,
McCowan et al. use random to mean independent and
equiprobable. Consequently, the figure illustrates that the
Zipf’s statistics for both human languages and dolphin
whistles differ significantly from the equiprobable distri-
bution. Such nonuniform distributions are commonly
found in natural systems. For example, Feller (1968, pp.
23–24) observed that ‘The usefulness of sample spaces in
which all sample points have the same probability is
restricted almost entirely to the study of games of chance
and to combinatorial analysis’.
There are largely two general contexts where Zipf’s law

has been related to language or other communicative

processes. In one context, a study begins with a known
language text or a mathematical model of communica-
tion, and it investigates the circumstances under which
the data fit a Zipf’s distribution. The studies of Zipf (1949),
Mandelbrot (1952) and Ferrer i Cancho & Solé (2003) all
belong to this context. Those studies indicate that Zipf’s
distribution appears when the processes are communicat-
ing under certain conditions. Serious problems arise when
such results are misinterpreted to suggest their converse
arguments. There is a broad range of stochastic mecha-
nisms, regardless of communicative or linguistic content,
which can give rise to Zipf’s distribution when only the
output events are observed. It is the vast nonspecificity of
Zipf’s statistic that makes it difficult to carry the findings
from studies in this context to studies where unknown
data are subjected to Zipf’s model-based analysis. In this
latter context, one would expect a high rate of false
positive decisions on the statistical test, making this
approach practically useless. This is the major reason
why we disagree with McCowan et al.’s decision to use
Zipf’s model-based analysis. Similarly, it is best to remain
cautious in interpreting results such as Mandelbrot (1952)
and Ferrer i Cancho & Solé (2003), which may apply only
under the specific conditions assumed in their respective
studies.

Shannon’s (1951) use of the Zipf’s distribution provides
an illustrative contrast in the proper application of this
empirical relation. Shannon exploited Zipf’s law as an
engineering technique to approximate the entropy of
English, but not as a test for linguistic features, commu-
nication efficiency, or as comparison of two communi-
cation systems. Specifically, knowing that English texts
follow Zipf’s distribution with reasonable accuracy, Shan-
non used the relation to approximate the probability
mass function of words. These probability mass functions
were then used to estimate the per word entropy of a first-
order Markov model approximating human language.
McCowan et al. (1999) do not cite this work by Shannon,
nor do they make the distinction between the appropriate
use of Zipf’s law as an empirical approximation method
and the inappropriate use of the law as a linguistic test or
as a comparison of two communication schemes.

McCowan et al. (1999) noted that when the informa-
tion source follows a Zipf’s distribution, the parameter a is
related to the information entropy. Because the entropy is
the upper bound on the amount of information trans-
mitted by the source (Cover & Thomas 1991, chapter 5),
this relation is important for determining whether Zipf’s
law is useful for the analysis of animal communication.
Specifically, the essential question is: ‘How does the value
of a relate to the Shannon entropy H for an information
source following Zipf’s distribution?’ Mandelbrot (1952,
chapter 6) analysed this question in detail with first-order
(hereafter in the sense of definition (1) above) sources.
Based on the Zipf’s distribution, the probability of a word
depends on the word’s rank. The maximum rank is
influenced by the length of observation and the vocabu-
lary or repertoire size of the source. An observer typically
has no prior knowledge about the true repertoire size.
In the general theoretical case, the maximum rank can
grow to be countably infinite. However, in practical
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observations, the maximum rank is necessarily limited to
a finite value due to the finite observation interval. Thus
‘rank truncation’ can be a consequence of limited obser-
vation length, finite repertoire or both. Figure 2, adapted
from Mandelbrot (1952), illustrates the two key points of
his argument as summarized in the following paragraphs.
This figure plots the entropy H of a Zipf’s distribution
source against the parameter a for the general case (solid
line) and cases with rank truncation (dashed line).
The first point is that, for the general case, the entropy

of a Zipf’s distribution source cannot be defined for
a R !1. For this case, the sum of all probabilities is an
infinite series

PN
rZ1 cr

a that diverges for a R !1. We shall
call a probability mass function that sums to one ‘valid’.
No valid mass function exists for a R !1, which includes
the Zipf’s law case of a Z !1. Since no valid probability
distribution can be defined in this region, the entropy H is
also undefined for sources with a R !1. For the region
a ! !1, but near a Z !1, H changes steeply with a; H is
much more sensitive than a to a change in the source
characteristics. Two information sources with vastly dif-
ferent values of H will have similar values of a. Therefore,
a is a poor parameter to characterize the communicative
properties of information sources. This is not a desirable
property for an experimental data analysis technique.
Mandelbrot’s second major point is that truncating the

rank or observation interval will significantly distort the
resulting entropy estimate Ĥ in the region near aZ !1,
the region of greatest interest for sources close to the Zipf’s
law distribution. Any practical experimental or observa-
tional study is limited to a finite data record. Let r denote
the rank of the least frequently observed word. Mandel-
brot indicates two specific points of interest where the Ĥ
obtained from finite observations is erroneously finite.

These are: Ĥ Z log2 r when aZ 0 for uniformly distrib-
uted sample points with countably many words, and
ĤZlog2

ffiffiffi
r

p
Cloge log2 r when aZ !1 for Zipf’s pre-

scribed case, although the true source entropy H is
unbounded for both cases.
Thus, even when the assumptions of Zipf’s model are

fully met, Mandelbrot’s results indicate that the Zipf’s
distribution parameter a is a less valuable estimate and
a less reliable representation of the source characteristics
than Shannon entropy because a is insensitive to changes
in the source properties. The Zipf parameter a is also
a less practical statistic than Shannon entropy because a’s
insensitivity makes it more difficult to estimate than
the entropy of a first-order model. Therefore, even if the
hypothetical source follows a Zipf’s distribution, the first-
order model entropy estimate reflects the complexity of
the source more accurately, and is easier to estimate than
the Zipf’s distribution parameter.
When data that are obtained through observations or

experiments are analysed using any parametric model,
one common technique is to find the best fit of the model
parameters to the data. We discuss two problems in the
following paragraphs: the possible consequences of a finite
data record, and the method used to find the parameter
a from a data record.
A valid empirical distribution can always be inferred

from a finite data record, even when there is no valid
probability distribution for the first-order information
source. For example, there may be no valid and consistent
mass function for the a R !1 case, whereas we can still
use the observed frequencies to find estimates â and ĉ that
fit the finite rank-observed data in such a way thatPr

rZ1 ĉr
âZ1: If the resulting estimate of Zipf’s statistic

â R !1, it means that: (1) â is an inaccurate estimate of

Zipf model parameter (slope)

Entropy not defined
unless rank truncated

Entropy insensitive
to rank truncation

0

Rank extends to infinity

Source entropy
H (bit)

Entropy sensitive
to rank truncation

Figure 2. Source entropy H as a function of Zipf’s statistic a (adapted from Mandelbrot 1952). The solid curve represents the case in which the
rank extends to infinity, and the dashed curve represents the case in which the rank is truncated at a finite point, r.
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the true a; (2) the source’s vocabulary is finite; or (3)
the assumption that the source follows Zipf’s distribution
is violated, and therefore the analysis may not be trust-
worthy.
Zipf’s distribution model has only one free parameter. In

equation (4), both a and c are parameters but c is uniquely
determined from a and therefore is not a free parameter.
The best fit of a for a finite set of observations must be
found by adjusting a in equation (4) with cZ1=

Pr
rZ1 r

a:
The estimated â thus obtained gives a valid Zipf’s distri-
bution model. On the other hand, if a straight line fitting
on log rank versus log frequency is used with a simple
regression analysis, the line model is given two free
parameters, slope and intercept. That is, whereas the
line-fitting procedure is allowed to fit any straight line,
to fit Zipf’s model one must choose the line from the
limited subset of lines whose slope and intercept produce
a valid Zipf’s distribution satisfying the axiom of proba-
bility. Specifically, with valid models, the probabilities of
all sample points must sum to one, or equivalently, the
observed frequencies must sum to the sample size. It is
clear that fitting Zipf’s model imposes stronger restrictions
on the set of allowable lines, and therefore a straight line
can fit the data with a high goodness-of-fit value even if
the same line fails to fit the Zipf’s distribution well.
McCowan et al. (1999, Figure 1 and Table 1) used

a regression that fit any line to the data, instead of
constraining the line to fall within the subset of valid
Zipf distributions. This erroneous application of the
underconstrained line fitting may have contributed to
the high R2 values given in their Table 1. The values of R2

given reflect the goodness-of-fit between the line obtained
and the data, but the line they obtained is not a valid
Zipf’s distribution. Thus, their analysis is inconsistent with
the very model they proposed. As shown below, the
parameters of their line do not satisfy the axiom of
probability, and thus their values are incorrect estimates
of Zipf’s distribution parameter a.
One might argue that the difference between the

unconstrained fit obtained by McCowan et al. (1999)
and a valid Zipf distribution is not large, and thus should
not change the goodness-of-fit substantially. To investi-
gate this possibility, we used the values given in McCowan
et al.’s (1999) Table 1 to sum the frequencies of all events
for the model fit they obtained. If the model is close to
a valid Zipf distribution, the sum of the model frequencies
should be close to the observed sample size. The sums of
the frequencies we obtained from the model are 289.8
(Adults), 85.44 (!1 month), 336.3 (2–8 months) and
191.5 (9–12 months). These numbers differ considerably
from the actual sample sizes of 600, 53, 424 and 293,
respectively, given in their Table 1. This means that
McCowan et al.’s (1999) model failed to preserve the
sample size. The same consistency check may be framed in
terms of the axiom of probability, computing

Pr
rZ1 pðrÞ for

the probability distributions derived from the slopes,
intercepts and number of total whistles in Table 1 (where
r is McCowan et al.’s N, whistle types). If the McCowan
et al.’s (1999) model fit is consistent with the data
observed, these probabilities should sum to one. Instead,
we found that the probabilities implicit in their model fit

sum to 0.4831 (Adults), 1.612 (!1 month), 0.7932 (2–8
months) and 0.6536 (9–12 months). None of these values
are close to the value of one required for a valid distribu-
tion. Therefore, we conclude that McCowan et al.’s R2

values indicate an excellent fit to a model that is not
internally consistent with the data they observed, since
the model does not match the actual observed sample size,
nor does it satisfy the axiom of probability. A fit con-
strained to a valid Zipf’s model would necessarily result in
a poorer goodness-of-fit measure.

In view of these issues, the question arises as to whether
Zipf’s law is still useful as a statistical comparative tool.
Our conclusion is that (1) the Zipf’s distribution model is
not an effective way to analyse unknown information
sources, even when we know that the source statistics
closely follow this distribution; (2) Zipf’s law analysis
cannot reliably discriminate between languages and sto-
chastic processes devoid of semantic or communicative
content. Studies that have depended on Zipf’s law as
a language detector or to measure communication capac-
ity should develop alternative techniques.

As a final note, we point out that McCowan et al.
underestimate the number of probabilities required for
higher-order Markov models. The correct number of
probabilities to be estimated for n call types taken r at
a time is nr and not n!/r!(n ! r)! as they report (McCowan
et al. 1999, page 415). Their expression is only valid under
the strong (and unstated) assumptions that no call is
repeated within the group of r calls, and that the temporal
order of the calls within the group is irrelevant. Previous
work using Markov models has assumed that calls are
repeated and that the ordering of calls within a sequence
is important (e.g. Hailman et al. 1995; Gentner & Hulse
1998).
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