Detection of whale calls in noise: Performance comparison
between a beluga whale, human listeners, and a neural network
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This article examines the masking by anthropogenic noise of beluga whale calls. Results from
human masking experiments and a software backpropagation neural network are compared to the
performance of a trained beluga whale. The goal was to find an accurate, reliable, and fast model to
replace lengthy and expensive animal experiments. A beluga call was masked by three types of
noise, an icebreaker’s bubbler system and propeller noise, and ambient arctic ice-cracking noise.
Both the human experiment and the neural network successfully modeled the beluga data in the
sense that they classified the noises in the same order from strongest to weakest masking as the
whale and with similar call-detection thresholds. The neural network slightly outperformed the
humans. Both models were then used to predict the masking of a fourth type of noise, Gaussian
white noise. Their prediction ability was judged by returning to the aquarium to measure
masked-hearing thresholds of a beluga in white noise. Both models and the whale identified bubbler
noise as the strongest masker, followed by ramming, then white noise. Natural ice-cracking noise
masked the least. However, the humans and the neural network slightly overpredicted the amount of
masking for white noise. This is neglecting individual variation in belugas, because only one animal
could be trained. Comparing the human model to the neural network model, the latter has the
advantage of objectivity, reproducibility of results, and efficiency, particularly if the interference of

a large number of signals and noise is to be examined. © 2000 Acoustical Society of America.

[S0001-4966(00)01007-9]

PACS numbers: 43.66.Dc, 43.66.Gf, 43.80.Lb [WA]

INTRODUCTION

Acoustic interference of noise with sound signals is an
experience of our daily life. Noise obscures or masks signals,
making it more difficult or even impossible to detect signals
important to us. Masking is defined as the process or amount
by which the threshold of audibility for one sound is raised
by the presence of another sound.! Defining SL, as the de-
tection threshold of a signal in the absence of noise (mea-
sured in dB) and SL,, as the detection threshold of the same
signal in the presence of masking noise, then the masking M
is expressed as the shift in threshold?

M=SL,—SL, [dB]. (1)

There are two types of masking: simultaneous masking
(when signal and noise occur at the same time) and nonsi-
multaneous masking (backward masking and forward mask-
ing). The physiological processes responsible for masking
are very complex and still not fully understood.** Masking is
strongest when signal and noise contain the same or very
similar frequencies. The frequency selectivity of the auditory
system, i.e., the ability to resolve the sinusoidal components
of a complex sound, plays an important role. The mamma-
lian auditory system can generally be represented as a series
of overlapping bandpass filters. The critical bandwidth is a
measure of the width of the auditory filters; Fletcher hypoth-
esized that at detection threshold, the intensity of the signal
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equaled the intensity of the noise in the corresponding audi-
tory filter (equal-power assumption).

Our understanding of masking is based on studies of the
human auditory system, which have been carried out for
many decades. Research on masking in marine mammals is
fairly recent. In a few projects the signal and the noise were
simple acoustic sounds, such as pure tones and white
noise.®"'* Erbe and Farmer'* studied masking with underwa-
ter sounds as they occur in a marine mammal habitat. With a
trained beluga whale, masked hearing data were collected in
a go/no-go paradigm according to a titration (staircase)
method. The signal was a typical beluga call, frequently used
by the population in Maxwell Bay. The noise was icebreaker
noise and natural ice-cracking noise. Figure 1 shows power-
density spectrograms of the sounds. Bubbler noise was re-
corded from the bubbler system of the Canadian Coast Guard
icebreaker HENRY LARSEN. This system blew high-pressure
air into the water in order to push floating ice debris away.
Ramming noise was propeller cavitation noise recorded from
the same vessel during ice ramming, particularly when an ice
ridge withstood the ship’s force and stopped the ship despite
the propeller still turning at full rpm. Sound of single ice-
cracking events caused naturally by local temperature and
pressure fluctuations was used for comparison. Results were
that bubbler noise masked strongest. The call-detection
threshold lay at a critical noise-to-signal ratio, NSR, of 15.4
dB (signal-to-noise ratio (SNR)-15.4 dB). The NSR was cho-
sen over the SNR, because in the original experimental pro-
cedure, the noise was the variable and was increased re-
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FIG. 1. Power density spectrogram of the beluga call, an icebreaker’s bub-
bler and propeller (ramming) noise, and natural ice-cracking noise in dB re
1 uPa’Hz @ 1 m. A source level of 160 dB re 1 uPa @ 1 m was assumed
for the beluga call. The source levels of the noises were respectively 194,
203, and 147 dB re 1 pPa @ 1 m.

flected in increasing NSR. Ramming noise followed with a
critical NSR of 18.0 dB. Ambient ice-cracking noise masked
the least with a critical NSR of 29.0 dB.

Controlled experiments with captive marine mammals
are both time- and cost expensive. It would be far more
efficient if a fast, ground-truthed model for masking experi-
ments existed. The interference of a large variety of anthro-
pogenic noise with signals used by animals could be studied
more easily. The literature on the mathematics of signal de-
tection in noise is vast. A few studies have applied standard
techniques to the problem of finding whale calls in
noise.>!® These studies compared techniques under the as-
pect of achieving the highest hit rate under the smallest false-
alarm rate. Erbe et al."” compared techniques with respect to
the order and level of the maskers as determined by masking
experiments with a beluga whale in an earlier study.'* Vari-
ous implementations of matched filters, spectrogram cross-
correlators, and an artificial neural network detected the
same beluga call as the whale in the same three noises, Fig.
1. The neural network, trained with backpropaga’tion,20 mod-
eled the beluga hearing data best, leading to the same order
of masking noises and similar critical NSRs.

The fact that beluga calls and much of the noise in their
habitat fall into the hearing range of humans poses the inter-
esting question of whether human listening experiments
could substitute for beluga experiments efficiently and with
sufficient accuracy. In this article, I compare masked-hearing
experiments with human subjects to the earlier beluga
experiments'* using the same signal and noise stimuli. The
human results and the neural network developed previously'”
are then used to predict the degree of masking that a fourth
type of noise, Gaussian white noise, would have on the bel-
uga call. Performance is compared and rated by going back
to the aquarium and measuring masked-hearing thresholds of
the beluga whale in white noise.
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I. METHODS AND RESULTS
A. Experiments with human subjects

The sounds used in this study were recorded digitally
with 16-bit resolution and a sampling frequency of 44 kHz.'*
The beluga call chosen was about 2 s long. A sample of
equal length was selected from each of the three noises, bub-
bler, ramming, and ice-cracking noise. In order to study the
relative degree of masking, all four sounds were normalized
by their root-mean-square (rms) pressure. Sounds were then
digitally mixed by adding their time series according to

x[t]=s[t]+ an[1]. ()

Here, x[ ¢] represents a 2-s time series of a mixed sound; s ¢]
is the 2-s time series of the call; n[¢] is the time series of one
of the three noises. The factor « denotes the noise-to-signal
ratio (NSR). NSRs of 0, 6, 12, 18, 24, 30, and 36 dB were
computed. The mixed sounds x[7] were subsequently nor-
malized by their rms pressure. Therefore, for increasing
NSR, the noise in a mixed sound would get louder and the
call quieter at the same time.

The sounds were digitally stored on a notebook com-
puter. They were converted into analog form by an external
soundcard (PORTABLE Sound Plus™ from Digispeech) and
amplified by a 20-W audio amplifier (Realistic model MPA-
30). Each human subject sat in a quiet room wearing head-
phones connected to the amplifier. First, the volume control
was adjusted such that the normalized sound was comfort-
ably loud. I then determined the call-detection threshold in
the absence of noise for each subject using a titration (stair-
case) method?' similar to the one described below for the
masked-hearing study. This was to ensure that the signal
content in mixed sounds with an NSR of 36 dB was at least
6 dB above the pure call-detection threshold. This way,
masked-hearing thresholds would not be influenced by the
call content dropping below audibility.

Masked-hearing data also were collected in a titration
method. The subjects were asked to say ‘‘yes’’ when they
detected a signal in the noise and ‘‘no’ if they perceived
only noise. Subjects received feedback after each trial about
whether a signal had been present or absent. Starting with a
high call content, mixed sounds were played at increasing
NSR in steps of 6 dB as in the early beluga experiment.'*
The subjects were given 2 s to respond. If the subject missed
a signal, I stepped back to the previous NSR. If the subject
successfully detected a signal, the NSR was stepped down.
This staircase method was continued until three consecutive
lower reversal points had the same NSR or until the total
number of trials exceeded 40. One such staircase was run for
each of the three noises; all data were collected in one ses-
sion. To reinforce the no response and to get information
about the subject’s response bias, one out of four signals was
a catch trial (pure noise). According to the titration proce-
dure, the masked-hearing threshold was calculated as the
mean of all (upper and lower) reversal points’! plus/minus
one standard deviation. As is generally done, this ignores the
fact that dB is a logarithmic ratio and thus does not give
symmetric confidence intervals about the mean. With T
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FIG. 2. Masked-hearing thresholds of five human listeners (A, B, C, D, and
E) and their mean (M), compared to a neural network'® (N) and the beluga
whale Aurora'* (W) for a beluga call buried in three types of noise: bubbler
(O), ramming (*), and icecracking ().

*0; being the threshold of one human subject, the average
human threshold T was calculated as the weighted mean®
i=1 a'i2

T= . 3)

The standard deviation of the mean threshold was calcu-
lated as the average weighted variation of the individual
thresholds around the mean??

4)

Figure 2 summarizes the data for the human subjects and
compares them to the neural network' and the beluga whale
Aurora.'* Results show that all five human subjects classified
the three noises in the same order as the neural network and
the whale: Bubbler noise was identified as the strongest
masker, followed by ramming, then natural ice-cracking
noise. Maximum deviation amongst the human listeners was
8.1 dB in the case of ramming noise. The probability of false
alarms was very small for all human subjects. Subjects A and
E gave no false alarms for any of the noises. Subject B had
false-alarm rates of 0.25, 0, and 0.13 for bubbler, ramming,
and ice-cracking noise, respectively. For Subject C, the cor-
responding values were 0.25, 0, and 0.14; for Subject D,
0.28, 0, and 0. With such ‘‘conservative’’ bias, calculated
thresholds can be expected slightly shifted towards smaller
NSRs than if the subjects had adopted a more ‘‘liberal’’
(risky) attitude.

With the exception of Subject B’s bubbler threshold and
Subject C’s ramming threshold, the whale’s thresholds lay
within one standard deviation of the human thresholds. This
indicates that, at least for these types of signal and noise,
human experiments could substitute for beluga experiments.
The mean plus/minus one standard deviation of the human
responses correctly surrounded the beluga thresholds for
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bubbler and ramming noise. For ice-cracking noise, how-
ever, the beluga threshold fell just outside the interval. In
fact, the beluga threshold lay at a higher NSR than the mean
human threshold. This could indicate that beluga whales can
detect their own calls in this type of ambient arctic noise
better than the average human. This might point at a masked-
hearing specialization of these animals living in a naturally
noisy environment. On the other hand, the standard deviation
for the mean human ice-cracking threshold was very small,
smaller than the deviations for the other two noises. This
occurred because of a smaller individual variation for ice-
cracking noise. With only five human subjects, this might be
coincidental, and testing of further human subjects could
change the mean and deviation. Similarly, one would expect
an individual variation amongst beluga whales and testing of
further animals would allow more solid conclusions.

The neural network’s thresholds approached the bel-
uga’s thresholds more closely than the human thresholds did.
For examining the masking of a large variety of signals and
noise, it is thus the more efficient technique. The neural net-
work further poses the advantage of objectivity with its re-
sults being reproducible and independent of a potentially
changing response bias.

During and after the experiment, all human subjects re-
ported a ‘‘frustration’’ with the experimental procedure. The
problem identified was that all sounds played had an equal
length of 2 s and the call always happened at the same time
in the noise. The initial reason for adding signal and noise
this way was to fix a phase between them. With signal and
noise exhibiting temporally varying spectral characteristics,
masking was expected to depend on the time lag between
signal and noise. Obviously, in the case of a pulsed signal
and a pulsed noise, masking would be minimal if the pulses
of the signal happened in between the pulses of the noise,
and maximal if the pulses of signal and noise were in phase.
Fixing the phase, however, meant that the subjects knew
when to expect the signal. For large NSRs and occasionally
for pure noise, subjects reported a frustration about the con-
flict between whether they thought they heard a signal only
because their mind knew what it would sound like and when
it would happen or whether they actually heard it. I therefore
modified the experiment to include two more beluga calls
with very different spectral characteristics.”> Human subjects
were asked not to simply say ‘‘yes’’ if any signal was de-
tected but to identify which of the three signals was detected.
The two subjects tested still had a problem with the proce-
dure, because they perceived all three signals simultaneously
at large NSRs or pure noise. It was then decided to modify
the experiment such that noise would play continuously and
the signal would be injected at random times so subjects did
not receive any onset cues.

B. Modified human experiments

The experimental setup differed only slightly from the
previous one. Two portable computers were used with the
same soundcards. One computer stored 2-s sound files of the
beluga call at varying sound-pressure levels. The other com-
puter stored 15 min of pure noise. The analog outputs of the
soundcards were connected to the two line-ins of the audio
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FIG. 3. Masked-hearing thresholds of five human listeners (A, B, C, D, and
E) and their mean (M), compared to a neural network (N) and the beluga
whale Aurora (W) for a beluga call buried in four types of noise: bubbler
(O), ramming (¥*), icecracking (<), and Gaussian ((J). Modified experimen-
tal procedure.

amplifier, which mixed them at a volume ratio of 1:1 and
sent a mixed sound to the headphones. Rather than taking a
15-min noise recording, the 15-min noise files were created
by repeating the previous 2-s noise file 450 times. This way,
no matter when the call happened in the noise, the NSR
defined as the ratio of rms voltages was constant over the 2-s
duration of the call. NSRs varied in steps of 3 dB, yielding a
less coarse analysis than with the previous 6 dB. A fourth
type of noise, Gaussian white noise, was created digitally
and assigned the same bandwidth of 22 kHz as the other
three noises. While the noise played continuously, beluga
calls were inserted according to a titration method starting
out with a loud volume and decreasing until the human
missed a signal, then stepping up again, and so forth. The
subjects received feedback after each trial. Every fourth trial
was a signal-absent trial. A session (series of trials) ended
after the lower reversal point had been constant three times
in a row or if the total number of trials exceeded 40. If this
took longer than 15 min, the noise playback was restarted
after a brief 2-s break.

Results are summarized in Fig. 3. All five human sub-
jects classified bubbler noise as the strongest masker, fol-
lowed by ramming noise, then Gaussian white noise, then
natural ice-cracking noise. Thresholds were slightly different
from before. For all five subjects, the critical NSRs for bub-
bler and ramming noise decreased. For three out of five sub-
jects, the critical NSR for ice-cracking noise decreased,
while it increased for the other two. The mean ice-cracking
threshold increased. These shifts, however, were small. A
test of statistical significance was done on the difference of
means, using 98 confidence intervals and student-¢ probabili-
ties [Eq. (13.14a)**]. With the exception of Subject B’s bub-
bler thresholds, all shifts in threshold were not statistically
significant. Individual variation amongst the five humans
was maximal with 5.5 dB in the case of ice-cracking noise
and hence smaller than previously. An analysis of catch trials
revealed a strongly conservative attitude in all subjects with
a probability of false alarms close to zero throughout the
experiment. In both human experiments, Subject E consis-
tently provided thresholds at lower NSRs than other human
subjects and also had the lowest false-alarm rate. Based on
the conclusion from the previous experiment, that human
listeners can successfully model beluga masking experiments
at least with the signal chosen and bubbler, ramming, and
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ice-cracking noise, the human data predict a beluga masked
hearing threshold of 23.0+1.1 dB for white noise.

C. Modified beluga experiments

The experimental setup was identical to the previous
beluga experiment.'* At the Vancouver Aquarium, the bel-
uga whale Aurora had been trained for a yes/no response
according to a behavioral go/no-go paradigm. The instru-
mentation was the same as that used for the human experi-
ments described in this article with the exception of an Ar-
gotec J9 underwater sound projector (with a bandwidth of 40
Hz-20 kHz) replacing the headphones. Noise played con-
tinuously for 15 min in the experiment pool. Aurora was
asked to station against a stationing bar 1 m in front of the
J9. At random times within 30 s after stationing, the beluga
call was injected into the noise at a certain NSR according to
a titration method with a step size of 3 dB. Aurora would
break away from the stationing bar upon call detection. Oth-
erwise, she would hold station and be recalled at the end of
the 30-s period. She was given 2 s to respond on the signal-
present trials; her reaction time was usually 1 s or less. Catch
trials made up one- fourth of all trials. The animal received
feedback after each trial, being rewarded for correct rejec-
tions and correct detections. Sessions were kept short, lim-
ited to 20 trials. About four sessions were run per noise.

Results are included in Fig. 3. Aurora’s thresholds were
similar to the ones from the previous experiment with the old
critical NSRs falling into one standard deviation of the new
NSRs. False-alarm rates were less than 0.1. Aurora classified
the four noises in the same order, from strongest to weakest
masking, as did the humans. Aurora’s thresholds fell into one
standard deviation of most of the individual human re-
sponses. For bubbler and ramming noise, Aurora’s thresh-
olds fell within one standard deviation of the average human
threshold. For ice-cracking noise, however, the mean human
threshold was previously smaller than and now larger than
Aurora’s threshold. As far as the predictability of the degree
of masking of white noise is concerned, results of the human
experiment slightly overestimate the beluga threshold. The
discrepancy, on the other hand, can be considered small if
one takes Aurora’s standard deviations into account. In this
case, the thresholds of Aurora and the humans overlap for all
four noises.

Figure 4 illustrates masking as a shift in threshold. The x
axis denotes frequency on a logarithmic scale; the y axis
gives sound-pressure levels in dB re 1 uPa @ 1 m. The gray
shaded area is the area underneath the beluga audiogram.
Sound falling into this area is considered not audible to bel-
uga whales. This audiogram is the mean of seven published
beluga audiograms.”!*?32¢ The top solid line is the spectrum
of the noise as it was played continuously for 15 min in the
experiment pool. Plotted are 12th-octave band levels corre-
sponding to the width of the beluga critical bands in this
frequency range, listed in Table I in Erbe er al.'® All noises
had a broadband noise level of NL=160 dB re 1 uPa @ 1 m.
The lower solid line represents 12th-octave band levels of
the call at threshold in the absence of noise; the broadband
signal level was'* §L,=108dB re 1 uPa @ 1 m. The middle
line gives band levels of the call at threshold in the presence
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FIG. 4. Shift in threshold of the call from noise absence (call spectrum) to
noise presence (masked call spectrum). Values for masking are 36.9 dB for
bubbler, 32.6 dB for ramming, 25.6 dB for ice cracking, and 30.7 dB for
white noise.

of noise. The amount of masking M can thus be read as the
upwards shift of the masked call spectrum compared to the
call spectrum. From Eq. (1), it can also be calculated as

M=SL,—SLy=NL—NSR,—SL,, (5)

where NSR, are the critical NSRs from Fig 3. In dB, the
NSR is the noise level minus the signal level. The masking
was 36.9 dB for bubbler noise, 32.6 dB for ramming noise,
25.6 dB for ice-cracking noise, and 30.7 dB for white noise.

There are a few important conclusions to be drawn from
Fig. 4. First, in the absence of noise, the animal stopped
responding ‘‘yes’’ to the call as soon as the low-frequency
peaks dropped below audibility. The animal should, how-
ever, still have heard the call components at 3 and 5 kHz to
much lower signal levels. I therefore like to call the call
spectrum at threshold the ‘‘call recognition level’” rather
than the *‘call detection level.”” This has important implica-
tions for masking in the wild. I hypothesize that an animal
would be able to hear parts of a call over long ranges but
recognize the call over shorter ranges.

In the presence of noise, for bubbler and ramming noise,
the masked call spectrum was shifted upwards such that the
three major peaks of the call just ‘‘touched’’ the noise spec-
trum. Spectrum levels plotted were means over the 2-s dura-
tion of the sounds. As can be seen from Fig. 1, the call
consisted of six spectrally similar pulses (phonemes) which
together occupied only about half of this time interval. In
fact, the mean spectrum of the phonemes is about 6 dB
higher than the mean over 2 s. Therefore, at the masked-
hearing threshold, the power of the call equaled the power of
the noise in the three critical bands surrounding the major
peaks in the call. This corroborates Fletcher’s equal-power
assumption.5 For Gaussian white noise, the two low-
frequency peaks of the masked call spectrum just surpassed
or equaled the noise power in the corresponding critical
bands. This might indicate that the low-frequency compo-
nents are more important than the high-frequency compo-
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nents for signal detection. For ice-cracking noise, the plot is
misleading. This noise consisted of loud pulses occurring
about twice a second. As concluded in an earlier study,14
masking for ice-cracking noise was so low because the ani-
mal (and humans) could identify the call from the phonemes
falling in between the pulses of the noise. It is this important
temporal structure of the intermittent ice-cracking noise that
is not represented in mean noise levels over 2 s. From Fig. 1,
in between the pulses of nearby ice-cracking events, the
spectrum levels of ambient ice-cracking noise drop at least
20 dB. From Fig. 4, for a phoneme falling in between two
noise pulses, five out of the six call peaks would surpass or
equal the noise power in the corresponding critical bands if
one lowered the noise level by 20 dB.

D. Modified neural network

A backpropagation neural network was previously
proven to successfully model beluga masked-hearing
experiments.'’ The same neural net design was chosen to
model the modified experiments with continuous noise. This
neural network was a fully connected two-layer network
with 400 input neurons, three hidden layer neurons, and one
output neuron. It was trained to detect features of the beluga
spectrogram in Fig. 1, buried in noise. As previously, ran-
dom and sinusoidal noise was used during the training phase.
The network gave an output close to 1 if it easily detected a
signal and an output close to 0 if it failed to detect a signal.
After training had been completed, the network was pre-
sented with spectrograms of the same mixed sounds as the
beluga and the humans in this study. Critical NSRs were
taken at an output of 0.5 resembling a 50% hit rate. As the
time lag between the call and the noise was random in the
modified experiment, thresholds of the humans and the
whale represented means over all time lags encountered.
Critical NSRs for the neural network were therefore aver-
aged over 40 different time lags. This was done in the fol-
lowing way. While creating mixed sounds for the neural net-
work, the time series of the noises were shifted against the
time series of the call in steps of 40 ms. Figure 5 shows how
the neural network’s critical NSRs varied as a function of
time lag between signal and noise. The plot can be wrapped
around the x axis, i.e., the NSRs at the 41st time lag equal
those at the first time lag. The maximum variation for bub-
bler and white noise was about 3 dB, which was small due to
the fact that the spectral characteristics of these two noises
didn’t vary with time. Ramming noise exhibited a strong
time dependence with sharp pulses occurring regularly every
90 ms. This time scale, however, was smaller than the time
scale of the beluga call, where pulses occurred every 250 ms
lasting for about 150 ms. The pulses (phonemes) of the bel-
uga call therefore encountered the same amount of ramming
noise relatively independent of the time lag. For ice-cracking
noise the situation was different. Its pulses occurred irregu-
larly and lasted a few hundred ms. Masking depended
largely on the time lag between the noise pulses and the call
phonemes. When they coincided, masking was greater; when
they were out of phase, masking was less. Figure 5 shows six
major maxima in the critical NSRs for icecracking noise.
They are about 250 ms apart, as are the call phonemes.
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FIG. 5. Critical NSRs of the neural network for bubbler, ramming, ice
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The mean critical NSRs over all time lags were 4.9, 7.9,
14.6, and 17.7 dB for bubbler, ramming, white, and ice-
cracking noise, respectively. The standard deviations were
0.8, 1.3, 1.3, and 2.3 dB, respectively. As explained earlier,19
the neural network (like other software techniques) required
the setting of an offset. Otherwise, thresholds would only
have relative meaning. Based on earlier results that this type
of neural network can successfully model beluga masking
experiments with bubbler, ramming, and ice-cracking
noise,lg I determined the offset using these three noises.
Adding a constant 10.1 dB to the network’s critical NSRs
yielded Aurora’s thresholds with a minimum sum-squared
error. The neural network was then asked to predict the de-
gree of masking of white noise. Results are printed in Fig. 3.
The neural network slightly overestimated the degree of
masking of white noise for beluga whales.

Il. SUMMARY AND CONCLUSION

The purpose of this study was to find a model for beluga
masked-hearing experiments which could accurately, reli-
ably, and efficiently predict the degree of interference of an-
thropogenic noise with beluga communication signals.
Masked-hearing thresholds of a beluga call in two types of
icebreaker noise (bubbler system and propeller cavitation/
ramming noise) and ambient arctic ice-cracking noise had
previously been measured with a trained beluga whale.'* A
variety of software models had subsequently been developed
identifying a backpropagation neural network as the most
suitable model for beluga masking experiments.'” Given that
beluga calls and most of the noise in their habitat fall into the
hearing range of humans, this article hypothesized that hu-
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man listening experiments could estimate results of beluga
experiments yielding data much faster without lengthy train-
ing. Five human subjects participated in this study. Their
performance was compared to that of the whale'* and the
neural network."”

The humans, the whale, and the neural network classi-
fied the three noises in the same order, identifying bubbler
noise as the strongest masker, followed by ramming, then
natural ice-cracking noise. The mean plus/minus one stan-
dard deviation of the human responses correctly encom-
passed the beluga thresholds for bubbler and ramming noise,
and were slightly lower than the beluga’s threshold for ice-
cracking noise. The beluga threshold fell within one standard
deviation of the neural network results in the case of all three
noises. The neural network therefore modeled the beluga
data better than did the humans. The human subjects identi-
fied a psychoacoustic problem with the experiment proce-
dure. All sounds played had an equal length of 2 s and the
call always happened at the same time in the noise. Subjects
therefore knew when to expect the call and had difficulty
deciding whether they only imagined it at high NSRs.

I therefore changed the experiment procedure such that
noise played continuously for 15 min and the call was in-
jected at random times. Thresholds were not statistically sig-
nificantly different compared to the previous experiment and
were in fact within one standard deviation of the previous
thresholds. Humans were then asked to detect the beluga call
in a fourth type of noise, Gaussian white noise. The mean
threshold was used to predict the masking of white noise in
beluga whales. The human experiment predicted that mask-
ing of white noise would be stronger than that of ice-
cracking noise but less than that of ramming noise.

I returned to the aquarium to measure beluga masked-
hearing thresholds with the modified experimental procedure
(continuous noise). The human experiment correctly pre-
dicted masking to lie in between that of ramming and ice-
cracking noise. A comparison of spectrum levels of the
masked call at threshold and the noise corroborated Fletch-
er’s equal-power assumption® in that the call was just
masked when the power in the critical bands surrounding the
major call frequencies equaled the power of the noise. The
animal attended strongly to the lower-frequency peaks of the
call and stopped responding as soon as these were masked by
noise or fell below the audiogram in the absence of noise.
Higher-frequency peaks of the call were likely still audible.
This fits in with the idea of call recognition rather than call
detection.

The backpropagation neural network from an earlier
study'® was used to model the modified masking experiment
with continuous noise. The network nicely illustrated how
masking depended on the time lag between signal and noise.
For ice-cracking noise, which had a temporal structure simi-
lar to the pulsed beluga call, masking was maximum when
the call phonemes coincided with the noise pulses and mini-
mum if the call phonemes fell in between. The neural net-
work ordered the noises the same way as the human subjects
and the whale. As with the human experiment, the neural
network slightly overpredicted the amount of masking for
white noise in beluga whales.
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Unfortunately, due to time constraints at the Vancouver
Aquarium, only one animal could be trained for the experi-
ment. A variation between individuals in masked-hearing
thresholds of a few dB can be expected. The testing of fur-
ther animals would thus allow a better judgment of the abil-
ity of human and software models to estimate masking in
beluga whales. Comparing the neural network model to the
human model, the neural network has the advantage of being
independent of subjectivity and of giving easily reproducible
results.
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